Показать сообщение отдельно
Старый 17.03.2010, 20:57     # 5
New_Angel
::VIP::
 
Аватар для New_Angel
 
Регистрация: 24.02.2003
Адрес: Lutsk, Ukraine
Пол: Male
Сообщения: 1 726

New_Angel Гурее всех гурых :-)
New_Angel Гурее всех гурых :-)New_Angel Гурее всех гурых :-)New_Angel Гурее всех гурых :-)New_Angel Гурее всех гурых :-)
Как продлить жизнь жёстким дискам (часть 3 - окончание)

3.2.3. Варианты охлаждения


Основным методом охлаждения современных ЖД 3.5″ остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода – пассивные радиаторы, тепловые трубки, жидкостные системы и др. – не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).

Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40º (примерно на 10º выше окружающей среды) и что все его поверхности следует охлаждать равномерно.

В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).

Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.

Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.

Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект – в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).

Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью растёт риск замыканий), так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.

В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.

Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках – П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8″, 1.3″, 1″ и даже 0.85″) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.

Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.

3.2.4. Другие факторы среды


Функционирование жёсткого диска зависит не только от температуры. Существенное значение имеют и другие параметры среды (влажность, давление, чистота воздуха и т.п.), на которые пользователи, увы, редко обращают внимание. Соответствующие пункты спецификации задают лишь формальные границы работоспособности ЖД, в то время как эксплуатационная надёжность обеспечивается в более узких интервалах.

В первую очередь упомянем относительную влажность воздуха. Чем выше влажность, тем меньше оказывается температурная стойкость ЖД – это связано, в частности, с коррозионными процессами внутри негерметичной банки. Согласно исследованию Hitachi, нагрев дисков до 45º при влажности 70% приводит к той же интенсивности отказов, что и нагрев до 60º при влажности 40%, считающейся нормальной. Плохо сказываются и быстрые перепады влажности (свыше 30% в час).

Другими словами, высокая влажность значительно сужает температурный диапазон ЖД. В такой среде дискам вреден любой нагрев выше 40º, и требуется более тщательный подход к охлаждению. Часто необходим принудительный обдув, или, как минимум, мониторинг температуры ЖД. Это должны учитывать пользователи, находящиеся в условиях влажного климата и на море, а также работающие в помещениях с повышенной влажностью.

К счастью, острота проблемы обещает вскоре снизиться. Причиной тому здесь технология перпендикулярной записи, потребовавшая новых материалов и покрытий, в том числе из благородных металлов (рутений и др. платиноиды). Они практически не подвержены коррозии, что даёт надежду на стойкость к влаге дисков последнего поколения.

Порой встречаются полностью залитые ЖД (ноутбук попал в воду, настольный компьютер пострадал от протечки, сервер залили пеной при тушении пожара и т.п.). В таких случаях многое зависит от продолжительности воздействия и давления воды: корпус диска отнюдь не герметичен, и даже несколько капель, попавших внутрь банки, действуют после включения фатально. Обычный пользователь с аварийной ситуацией вряд ли справится, поэтому следует не пытаться высушить накопитель подручными средствами (фен и т.п.) и тем более не вскрывать гермоблок, а обратиться к специалистам. Спасти данные может лишь комплекс срочных работ, включая промывку и сушку электроники, чистку контактов, а при необходимости – перестановку механики.

Второй по важности фактор воздушной среды – загрязнённость, в первую очередь содержание взвешенных частиц. Наличие в банке ЖД барометрического отверстия (breath hole), отвечающего за выравнивание давления, означает, что туда может подсасываться забортный воздух. Он, конечно, проходит очистку, однако встроенный фильтр имеет ограниченную ёмкость и к тому же пропускает мельчайшие частицы (например, табачный дым).

В сильно запылённой или накуренной атмосфере долговечность диска оказывается под вопросом: рано или поздно загрязнения попадут на пластины, и тогда жди беды. Ведь в современных ЖД головка летит на высоте всего 8-15 нм, и частицы дыма (характерный размер 20-60 нм) представляют для неё серьёзное препятствие. А столкновение с более крупными пылинками и вовсе фатально.

Сказанное, разумеется, не означает, что накопитель придёт в негодность от первой же выкуренной рядом сигареты – дым худо-бедно фильтруется на 99.5%, да и воздухообмен в банке крайне мал. Однако постоянная эксплуатация в накуренном помещении (где, как говорится, хоть топор вешай) достоверно снижает наработку на отказ.

В этом аспекте более уязвимы диски 2.5″ – из-за тонких фильтров и неблагоприятных условий эксплуатации. Так, наблюдался экземпляр, не выдержавший пыльной бури в саванне: владелец взял ноутбук в экспедицию, и пыль проникла сквозь все уплотнения. Результатом были убитые головки и трудоёмкое восстановление данных.

Износ ЖД резко ускоряют коррозионно активные аэрозоли (морская соль, производственные выбросы). Они, а также другие агрессивные примеси в воздухе (сернистый газ, окись азота, испарения хлора из воды в бассейнах и др.) портят в первую очередь электронику и контакты, но могут через фильтр добраться и до механики.

Ионизаторы воздуха, как оказалось, тоже могут быть вредны для дисков. В данных приборах для генерации аэроионов используется коронный разряд высокого напряжения (6-20 кВ). При этом возникают сильные электростатические поля, и в неблагоприятных условиях (близкое расположение, отсутствие заземления, сухой воздух) электроника ЖД даёт сбои. Результат – искажение данных, зависания ОС и другие неприятности, исчезающие с отменой ионизации.

Наконец, атмосферное давление не должно сильно отклоняться от стандартных значений. В разреженном воздухе снижается высота полёта головок, отчего растёт риск повреждений и сбиваются многие автоподстройки (изменившаяся отдача путает карты микропрограмме). Диск теряет стабильность записи и чтения, сыпет ошибками и быстро выходит из строя.

Такое неоднократно случалось с компьютерами на высокогорных обсерваториях и с ноутбуками альпинистов и прочих экстремалов. Как показала практика, на высоте свыше 3000 м обычные ЖД не выдерживают и месяца. Для подобных условий выпускаются накопители в специальном исполнении, с полностью герметичной усиленной банкой.

3.3. Механические воздействия


Прецизионные устройства с подвижными частями, каковыми являются современные жёсткие диски, крайне чувствительны к любым внешним воздействиям – ударам, толчкам, вибрации. Производители творят чудеса, пытаясь ограничить или компенсировать их влияние (материалы, конструкция, функции микропрограммы, средства самодиагностики и т.п.), но полностью защитить ЖД эти меры не в состоянии. Радикальная амортизация, например упругая подвеска диска во внешнем корпусе, могла бы исправить дело, однако дороговизна и непрактичность не оставляет шансов подобным решениям.

Удары и вибрация – основные виды вредоносных механических воздействий. При этом удары поражают как выключенный, так и работающий ЖД, хотя и в разной степени, а вибрация – только работающий. Дело в том, что ускорения при обычно встречающейся вибрации недостаточны, чтобы физически повредить диск, и её основной эффект – функциональные нарушения (системы автоподстройки и т.п.).

3.3.1. Удары


Риск повреждающих ударов существует на всех этапах жизненного цикла накопителей. Как показала практика, чаще всего диски бьются при транспортировке и установке. Сильные удары, толчки, а особенно падения приводят механику в негодность несмотря на то, что в выключенном состоянии ЖД в 4-5 раз более стойки к ударам (в частности, головки выведены с пластин и находятся на парковочной рампе; эту полезную деталь вслед за IBM внедрило большинство производителей).

Именно поэтому механическая защита ЖД так подробно была описана в разделах 1.4 и 2.3. Повторим, что удары опаснее, чем кажется: незащищённый накопитель рискует серьёзно травмироваться при падении с высоты всего 10-15 см (речь идёт о совпадении неблагоприятных условий – жёсткий пол, неудачная точка контакта и т.п.).

После установки в системный блок диск, конечно, уже не так уязвим – сам корпус защищает его от сильных ударов. Однако расслабляться не следует: в рабочем состоянии механика гораздо чувствительнее, и ее способны повредить даже сравнительно небольшие ускорения, сравнимые с падением с высоты 3-4 см. В первую очередь страдает распаркованный БМГ. Летящие на высокой скорости головки могут коснуться пластин, а это бесследно не проходит.

Речь идёт не только о фатальных запилах поверхности или перегреве магнитных резисторов, моментально выводящем их из строя. Даже при лёгком контакте может сточиться и деформироваться слайдер (элемент подвеса головки, отвечающий за аэродинамику). В последнем случае диск работоспособности не теряет и внешне всё нормально. Однако скособоченная головка работает в нештатном режиме, и довольно быстро накопившиеся погрешности перерастают в нечитаемые данные.

Кроме того, в современных ЖД при скорости вращения 7200 об./мин и увеличившейся массе пластин становится очень заметен гироскопический эффект. При разворачивающем ударе мгновенная нагрузка на шпиндель многократно возрастает по сравнению с нерабочим состоянием, что повышает риск погнуть вал двигателя и разбить подшипник. Такие повреждения всегда тяжелы и часто фатальны.

Априори сложно оценить, какой эффект может иметь тот или иной удар по корпусу. Прежде всего, различается длительность и суммарная энергия ударов. Ясно, что резкий толчок опаснее сглаженного – выше развиваемые силы и ускорения. Однако провести водораздел не так-то просто.

В спецификациях ЖД длительность удара принимается равной 2 мс, что больше характерно для падений, причём на твёрдую поверхность. Диск, упавший с высоты всего 5 см, испытывает вертикальное ускорение в 50 g (оно уже критично для некоторых моделей). Горизонтальные воздействия обычно не столь кратковременны, но опасность им придает эффект застоя у эластичных ножек корпуса, когда начальная фаза смещения происходит с повышенным ускорением.

Ориентировочно можно считать, что для работающего диска вреден любой толчок, приводящий к смещению СБ хотя бы на 2-3 см. Реальные же последствия для ЖД весьма разнятся: это зависит от ударостойкости конкретной модели, жёсткости корпуса и амортизации корзины. Учесть всё это сложно, поэтому стоит подстраховаться и разместить компьютер наиболее устойчивым образом, а когда питание включено – избегать любых перемещений.

Вероятность «грохнуть» диск во многом зависит от расположения системного блока. На практике чаще страдают компьютеры, стоящие на полу – их самих и подключённые кабели задевают ногами и уборочными приспособлениями. При наличии неконтролируемых факторов риска (проходное место, дети и т.п.) можно даже прикрепить СБ к неподвижному предмету вроде трубы или ножки стола.

Наиболее опасно падение набок. В этом случае диск уязвим даже при выключенном питании, поскольку он испытывает мощный боковой удар, способный разбить подшипники и погнуть ось шпинделя. Работающий же накопитель в большинстве случаев фатально повреждается: головки резко чиркают по пластинам, выбитые частицы покрытия, попадая под головки, работают как абразив и сдирают соседние участки.

Процесс развивается лавинообразно, и всего за несколько секунд приводит устройство в полную негодность. Данные в прямом смысле слова стираются в порошок, оседая магнитной пылью на стенках и воздушном фильтре. Как горько шутят ремонтники, собрать их можно только пылесосом…

Отдельно стоит рассмотреть ударостойкость внешних накопителей, получающих всё большую популярность. Они выпускаются двух основных классов, исходя из типоразмеров ЖД 3.5″ и 2.5″. Другие форм-факторы распространены значительно меньше: диски 1.8″ необоснованно дороги, а микродрайвы 1″ проиграли конкуренцию флэшкам и сходят со сцены.

Контейнеры для ноутбучных дисков – это зачастую простейшие тонкостенные коробочки, ударостойкости они почти не добавляют. Более надёжны, но и дОроги, модели с дополнительной амортизацией (обычно это резиновые прокладки вокруг накопителя, а также утолщения корпуса на торцах и защитный чехол). При нормальной эксплуатации эти мобильные устройства особых проблем не доставляют. Незначительные толчки и удары им не слишком опасны, даже полёты со стола порой сходят с рук (здесь, правда, больше заслуга современных дисков, оснащённых датчиком ускорения и успевающих запарковать головки уже в первые 20 см падения).

Естественно, испытания такого рода мы проводить не советуем. Также не стоит ставить в боксы 2.5″ особо ёмкие или скоростные ЖД (200 Гб и выше, 7200 об./мин) - они заметно чувствительнее к ударам, да и с питанием от порта USB случаются проблемы. Оптимальным наполнением будет модель среднего объема (80-160 Гб), со скоростью вращения шпинделя 4200 или 5400 об./мин.

Контейнеры для дисков настольного формата значительно разнообразнее, что обусловлено растущим спектром применений (не только внешние накопители, но и медиацентры, серверы резервного копирования и т.п., вплоть до сетевых NAS-хранилищ и RAID-массивов). Они, как правило, выполнены из металла, имеют сетевое питание и широкий набор интерфейсов – от привычного USB до скоростных eSATA и Gigabit Ethernet. Охлаждение чаще пассивное, достигается плотным прижимом диска к шасси (крошечный вентилятор, если есть, играет вспомогательную роль).

Подобная конструкция затрудняет внутрикорпусную амортизацию, обычно дело ограничивается резиновыми ножками. ЖД в таком боксе почти столь же чувствителен к ударам, как и незащищённый накопитель, и требует сходных предосторожностей. В частности, при перевозке желательна дополнительная защита, а выбирать место для установки (стационарной!) надо наравне с системным блоком или даже тщательней. Малая масса контейнера делает его более чувствительным к случайным толчкам, а габариты порой способствуют опрокидыванию.

3.3.2. Вибрации


Как уже было сказано, вибрации не угрожают надёжности жёсткого диска – скорее, они угрожают находящейся на нём информации. ЖД от вибрации редко страдает физически, а вот что-то неправильно прочитать или записать вполне может. Правда, рядовой пользователь подобные различия осознаёт с трудом: с его точки зрения, накопитель не выполняет своих прямых обязанностей. Чем же опасна вибрация?

Прежде всего, вибрация поражает систему позиционирования. Перемещение БМГ на нужную дорожку и удержание над ней в процессе записи и чтения данных – это сложный колебательный процесс, где одной из опорных частот служит частота вращения шпинделя, чаще всего 120 Гц. Внешние периодические возмущения (а это, собственно, и есть вибрация) изменяют спектральный состав этих колебаний и вносят разлад в ансамбль обратных связей.

Конечно, изощрённые алгоритмы firmware продолжают работать, математику не обманешь, но позиционирование значительно замедляется, а сам процесс записи данных может происходить с ошибками. Впоследствии при считывании эти места будут восприниматься как дефектные; возможны и другие проблемы, например, паразитные репозиционирования (головки как бы дёргаются).

Кроме того, от вибрации страдает производительность накопителя. Ведь даже линейное чтение требует частых перемещений на соседнюю дорожку, а всякое позиционирование затруднено. В результате обмен данными с ЖД замедляется в несколько раз и теряет стабильность, что плохо сказывается на работе операционной системы и всего компьютера.

Источники вибрации делятся на внешние и внутренние по отношению к системному блоку. Внешние источники – это звуковые колонки, особенно мощные низкочастотные (сабвуферы), а также силовые трансформаторы. Последние чаще встречаются не в быту, а на производстве; к этому добавляются разнообразные электродвигатели, насосы и прочее вибрирующее оборудование. Защита здесь одна – размещение СБ в безопасном месте, подальше от вредных воздействий. В лёгких случаях поможет вибропоглощающая прокладка, например резино-войлочные коврики в два и более слоя.

Внутренние источники вибрации, более распространённые и сложно нейтрализуемые – это вентиляторы; системный динамик (PC Speaker); оптические приводы CD/DVD; другие жёсткие диски. Рассмотрим эти угрозы по порядку.

Вентиляторы причиняют вред ЖД только при неудачной конструкции корпуса или ошибочном монтаже, когда когда отсутствует механическая развязка и вибрации крыльчатки передаются на дисковую корзину. К этому часто приводят самодельные доработки старых или дешёвых корпусов, а также попытки индивидуального охлаждения ЖД. В современном СБ общее число вентиляторов доходит до шести-семи, но их продуманное размещение, качественные подшипники с большим ресурсом и эластичные крепления сводят вибрации на нет.

Системный динамик в большинстве современных компьютеров распаян прямо на материнской плате, он весьма компактен и заметного влияния не оказывает. Однако в старых корпусах ещё встречаются громкоговорители традиционной конструкции, которые крепятся к передней стенке, а иногда и к днищу дисковой корзины без всякого демпфирования. В этом случае их звуковые вибрации легко достигают ЖД, что как минимум нежелательно. Такой динамик лучше демонтировать или хотя бы отключить.

Оптические приводы, а также флоппи-дисковод, могут порождать сильные вибрации, когда в них попадают носители низкого качества. Особенно это относится к высокоскоростным приводам CD-ROM и болванкам no name, которые зачастую бывают несбалансированы. Пытаясь прочитать такой CD на разных скоростях, привод многократно разгоняется и замедляется, а возникающие при этом вибрации передаются на корзину и доходят до ЖД. Чтобы ослабить это вредное влияние, в хороших корпусах корзины для оптических приводов и жёстких дисков разделены и механически развязаны.

Наиболее сложный случай – соседство нескольких ЖД в одной корзине. При активной работе они мешают друг другу, особенно в моменты позиционирования, а слегка различающаяся частота вращения шпинделей вызывает биения и резонансы. Результат – неприятный гул и дребезг в различных частях корпуса, снижение производительности дисковой подсистемы и рост числа сбоев.

Подобная ситуация стала часто встречаться, поэтому в ряде современных корпусов сделаны две раздельные корзины для ЖД. Например, основная корзина находится, как обычно, в средней части корпуса, а на днище есть дополнительное посадочное место (хотя бы крепёжные ушки). Его преимущества – полная виброразвязка, устойчивость и хорошее охлаждение диска. Существуют и такие конструкции, где посадочные места размещены перпендикулярно друг другу.

При другом подходе все ЖД монтируются через демпфирующие элементы – втулки, прокладки, салазки и т.п.(они должны быть предусмотрены конструкцией корзины). Неплохо себя зарекомендовал и самодельный амортизирующий подвес из четырёх полосок твёрдой резины. Эти практичные решения позволяют свести на нет взаимное влияние дисков; надо только не забывать про слабый теплоотвод на корзину и принять меры к обдуву.

Заключение


Мы рассмотрели весь жизненный цикл жёстких дисков и выяснили, какие опасности и угрозы подстерегают на разных этапах это чудо современных технологий. ЖД могут быть вполне надёжны, если осознанно подбирать их под имеющиеся задачи, а также правильно распределять затраты – скажем, экономия на блоке питания скорее всего выйдет боком. Аккуратная установка, грамотная эксплуатация и регулярный контроль состояния дисков (он остался за рамками статьи) обеспечат им долгую жизнь и сведут к минимуму возможные неприятности.

Увы, ничто не вечно, и при всех предосторожностях диски порой выходят из строя. На этот случай надо иметь резервную копию ценных данных, благо технологий бэкапа сейчас хватает на любой вкус и кошелёк – от клонирования разделов на DVD до выгрузки файлов в Интернет-хранилище. Внешние накопители и те получили аппаратную функцию копирования: достаточно нажать кнопку на корпусе, чтобы процесс пошёл. При таких удобствах даже неопытные пользователи смогут сохранить свою «инфу» без лишних проблем.

С описанными мерами потенциальная ненадёжность ЖД нивелируется, а их роль как главных накопителей информационной эпохи ещё более возрастает. Теоретические пределы плотности записи и скорости обмена на порядок больше нынешних цифр, так что отрасли есть куда расти. Планируется, что к 2013 году 2.5″ накопители достигнут ёмкости 4 Тбайт, а настольные диски доберутся до 10 Тбайт; в более далёких прогнозах фигурирует цифра 50 Тбайт.

Активно развиваются и конкурирующие технологии (твердотельные, оптические и другие). Однако революции в хранении данных пока не предвидится: накопители SSD на флэш-памяти претендуют лишь на некоторые сегменты рынка (в первую очередь из сферы мобильных применений), а прочим разработкам до массового внедрения ещё далеко. Альтернативные принципы записи остаются лабораторной диковиной, изредка воплощаясь в дорогие нишевые продукты. Забвение жёстким дискам ещё долго не грозит…
__________________
Поймите меня и я пойму вас ...
New_Angel вне форума